Logic Synthesis via Boolean Relations

Valentina Ciriani
University of Milano

A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Using Flexibility in P-Circuits by Boolean Relations, IEEE Transanctions on Computers 64(12), 2015.

Outline

\& Boolean relations
\& Example: logic synthesis with critical signals
\&Problem definition
\& P-circuits
\& Synthesis of P-circuits with Boolean relations
\& Experimental results

Incompletely speciffed Multioutput Boolean function

\& Incompletely specified n-input, m-output Boolean function:

$$
F:\{0,1\}^{n} \rightarrow\{0,1,-\}^{m}
$$

\& Example $\{00,10\}\}$

Incompletely specified Multioutput Boolean function

Boolean Relations

* Boolean relations are a generalization of incompletely specified logic functions
\& A Boolean relation R : $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a one-to-many multi-output Boolean mapping
\& Example

$$
\begin{array}{ll}
R(00)=\{00\} & R(10)=\{00,11\} \\
R(01)=\{00,01,10\} & R(11)=\{10,11\}=1-
\end{array}
$$

Boolean relation

Covering functions (compatible functions)

Boolean Relations

\& The set of multi-output functions compatible with a Boolean relation R is defined as

$$
F(R)=\{f \mid f \subseteq R \text { and } f \text { is a function }\} .
$$

* The solution of a Boolean relation R is a multioutput Boolean function $f \in F(R)$
\& The function f is an optimal solution of R according to a given cost function c, if

$$
\forall f^{\prime} \in F(R), c(f) \leq c\left(f^{\prime}\right)
$$

Example of Synthesis via Boolean Relations

\& Scenario:
Logic synthesis in presence of critical signals that should be moved toward the output
\& Application fields:
for decreasing power consumption:
«signals with high switching activity
for decreasing circuit delay:
>signals with high delay

Problem

Restructure (or synthesize) a circuit in order to move critical signals near to the output (decreasing the cone of influence):
 minimizing the circuit area
 $>$ keeping the number of levels bounded
 performing an efficient minimization

Simple solution: Shannon

* Shannon decomposition
$\delta \mathrm{x}$ is the critical signal

$$
f=x f_{x=1}+\bar{x} f_{x=0}
$$

$\otimes f_{x=0}$ and $f_{x=1}$ do not depend on x
δx is near to the output

Problem of Shannon approach

Let $\mathrm{x}=\mathrm{x}_{1}$
$x_{1}=0 \quad x_{3} x_{4}$

The idea

* try not to split the cubes
\& let the critical signal x near to the output
* idea:
the crossing cubes that do not depend on x are not projected
\& problem: how to identify the points that may form crossing cubes that do not depend on x ?

They are in the intersection: $\mathrm{I}=\mathrm{f}_{\mathrm{x}=0} \cap \mathrm{f}_{\mathrm{x} \neq 0}$

Example

We can remove the points of the intersection

$$
x_{1}=1 \quad x_{3} x_{4}
$$

00	01	11	10	
0	0	0	1	0
1	1	1	1	1

1000

Intersection

	00	01	11	10
${ }^{2}$	0	0	${ }_{1}^{\prime} 1$	0
1	0	0	11!	0

Example

$$
x_{1}=0 \quad x_{3} x_{4}
$$

We can remove the points of the intersection

$\mathrm{x}_{1} \mathrm{x}_{2}$	00	01	11	10
00	0	1.	11	0
01	0	0	1	0
11	1	1	1	1
10	0	0	${ }^{\prime} 1{ }^{\prime}$	0

$$
x_{1}=1 \quad x_{3} x_{4}
$$

| x_{2} | 00 | 01 | 11 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| | 1 | 1 | 0 | 1 |
| | 1 | | | |

Example

We insert don't cares instead

$x_{1}=1$		$x_{3} x_{4}$			
x_{2}	00	01	11	10	
	0	0	0	-	0
	1	1	1	-	1

${ }_{3} \mathrm{X}_{4}$00		01	11	10
x_{2}	0	0	'11	0
1	0	0	11!	0

Example

$x_{1} x_{2}$	$\begin{aligned} & x_{4} \\ & 00 \end{aligned}$	01	11	10
00	0	1	11	0
01	0	0	1	0
11	1	1	1	1
10	0	0	${ }^{\prime} 1{ }_{1}{ }^{\prime}$	0

$x_{1}=1$ x_{2}	$\begin{aligned} & x_{3} x_{4} \\ & 00 \end{aligned}$	01	11	10
0	0	0	0	0
1	1	1	1	1

$\mathrm{x}_{3} \mathrm{X}_{4}$				
x_{2}	0	0	, 1	0
1	0	0	11!	0

EPFL Workshop on Logic Synthesis \& Verification. December 10-11, 2015

Example 2

Let $\mathrm{x}=\mathrm{x}_{1}$

$\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\mathrm{X}_{3}}$	${ }^{1}$	01	11	10
00	1	0	0	1
01	1	1	0	1
11	0	1	1	1
10	1	0	0	1

$x_{1}=1 \quad x_{3} x_{4}$ | \mathbf{x}_{2} | 00 | 01 | 11 | 10 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | - | 0 | 0 | - |
| 1 | 0 | - | 1 | - |

Example 2

$\mathrm{X}_{1} \mathrm{X}_{2}$	00	01	11	10
00	1	0	0	1
01	1	1	0	1
11	0	1	1	1
10	1	0	0	1

P-representation of a completely speciffed Boolean function f

\& Let

$$
I=f_{x=0} \cap f_{x \neq 0}
$$

\& A P-representation $P(f)$ (or P-circuit) is:

$$
P\left(f \neq x f^{\neq}+\bar{x} f^{=}+f^{I}\right.
$$

where

$$
\begin{aligned}
& f_{x=0} \backslash I \subseteq f^{-} \subseteq f_{x=0} \\
& f_{x x 0} \backslash I \subseteq f^{*} \subseteq f_{x x 0} \\
& \varnothing \subseteq f^{I} \subseteq I \\
& P(f)=f
\end{aligned}
$$

Minimization of P-circuits using Boolean Relation

\& P-circuit minimization:
find the sets $f=, f^{\neq}, f^{\prime}$ leading to a P-circuit of minimal cost
\& Formalized and solved using Boolean relations
\& We define a relation R such that

- the set of all the compatible functions of R corresponds exactly to the set of all possible Pcircuits for f
an optimal solution of R is an optimal P-circuit for f

Minimization of P-circuits using Boolean Relation

\& $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\} \quad R_{f}:\{0,1\}^{n-1} \rightarrow\{0,1\}^{3}$
\& Input set for R_{f} : all the variables but the critical signal X_{i}

* Output set for R_{f} : triple of functions $f^{=}, f \neq, f^{\prime}$ defining a P-circuit for f

$\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{i}-1} \mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{n}}$	$\mathbf{R}_{\mathrm{f}}\left(\mathbf{f}^{=}, \mathbf{f}^{\neq}, \mathbf{f}\right)$
Points in $\mathrm{f}_{\mathrm{x}=0} \backslash \mathrm{l}$	100
Points in $\mathrm{f}_{\mathrm{x} i \neq 0} \backslash \mathrm{l}$	010
Points in I	$\{--1,11-\}=\{001,011,101,111,110\}$
All other points	000

Minimization of P-circuits using Boolean Relation

Theorem:

P-circuit minimization for f

minimization of the Boolean relation R_{f}

Incompletely Specified Functions

$\mathrm{f}_{\mathrm{xi}=0}$	$\mathrm{f}_{\mathrm{x}=1}$			
		0	1	-
	0	000	010	0-0
	1	100	\{-1, 11-\}	$\{-1,1-\}$
	-	-00	\{-1, -1 \}	---

P-circuit of an incompletely speciffed Boolean function f

\otimes Let $f=\left\{f\right.$ on, $\left.f^{d c}\right\}$, with $f^{\text {on }} \cap f^{d c}=\varnothing$;
Define

$$
I=\left(f_{x=0}^{o n} \cup f_{x=0}^{d c}\right) \cap\left(f_{x=0}^{o n} \cup f_{x=0}^{d c}\right)
$$

$\star A$ P-circuit $P(f)$ is:

$$
P(f)=x f^{\neq}+\bar{x} f^{=}+f^{I}
$$

where

$$
\begin{aligned}
& f_{x=0}^{o n} \backslash I \subseteq f^{-} \subseteq f_{x=0}^{o n} \cup f_{x=0}^{d c} \\
& f_{x=0}^{o n} \backslash \subseteq f^{-} \subseteq f_{x=0}^{o n} \cup f_{x=0}^{d c} \\
& \varnothing \subseteq f^{I} \subseteq I \\
& f^{o n} \subseteq P(f) \subseteq f^{o n} \cup f^{d c}
\end{aligned}
$$

Experimental results

* Linux Intel Core i7, 3.40 GHz CPU, 8GB RAM
* CUDD library for OBDDs for function representation

BREL (Bañeres, Cortadella, and Kishinevsky, 2009) for the synthesis of Boolean relations

* Multioutput benchmarks have been synthesized minimizing each single output independently from the others

Experimental results

* μ_{L} and μ_{BDD} :
refer to P-circuits synthesized with cost function μ_{L} that minimizes the number of literals
- and $\mu_{B D D}$ that minimizes the size of the BDDs used for representing the relations
* modeling the P-circuit minimization problem using Boolean relations pays significantly:
\diamond P-circuit μ_{L} and P-circuit $\mu_{B D D}$ turned out to be more compact than the corresponding P-circuits proposed BCVT2009 in about 92\% and 78\% of our experiments, respectively

Experimental results

	P-circuit μ_{L}			P-circuit $\mu_{B D D}$		
Average gain	Time	Area	Delay	Time	Area	Delay
w.r.t. S-circuit	-383%	37%	29%	95%	30%	25%
w.r.t. P-circuit [4]	-4214%	33%	24%	56%	25%	20%
w.r.t. SOP	-39412%	26%	19%	-304%	18%	14%

TABLE II
Average gain of P-Circuits based on Boolean relations

	P-circuit μ_{L}	P-circuit $\mu_{B D D}$
w.r.t. S-circuit	65%	61%
w.r.t. P-circuit [4]	13%	13%
w.r.t. SOP	44%	62%

TABLE III
COMPARISON OF POWER DISSIPATION
EPFL Workshop on Logic Synthesis \& Verification. December 10-11, 2015

Conclusions

* Boolean relations can be useful for modeling Boolean hard optimization problems
* Boolean relations have been successfully used in logic synthesis

Future work:

* investigating the use of Boolean relations in other algorithmic contexts (i.e., data mining)
* trade-off quality of results vs. scalability

Thanks

www.di.unimi.it/ciriani

